Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 2834, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503981

RESUMO

Recruitment of DNA repair proteins to DNA damage sites is a critical step for DNA repair. Post-translational modifications of proteins at DNA damage sites serve as DNA damage codes to recruit specific DNA repair factors. Here, we show that mRNA is locally modified by m5C at sites of DNA damage. The RNA methyltransferase TRDMT1 is recruited to DNA damage sites to promote m5C induction. Loss of TRDMT1 compromises homologous recombination (HR) and increases cellular sensitivity to DNA double-strand breaks (DSBs). In the absence of TRDMT1, RAD51 and RAD52 fail to localize to sites of reactive oxygen species (ROS)-induced DNA damage. In vitro, RAD52 displays an increased affinity for DNA:RNA hybrids containing m5C-modified RNA. Loss of TRDMT1 in cancer cells confers sensitivity to PARP inhibitors in vitro and in vivo. These results reveal an unexpected TRDMT1-m5C axis that promotes HR, suggesting that post-transcriptional modifications of RNA can also serve as DNA damage codes to regulate DNA repair.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/metabolismo , Animais , Linhagem Celular Tumoral , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Silenciamento de Genes , Humanos , Metilação , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , RNA Interferente Pequeno/metabolismo , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Lett ; 415: 198-207, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29179998

RESUMO

ELL2 is an androgen-responsive gene that is expressed by prostate epithelial cells and is frequently down-regulated in prostate cancer. Deletion of Ell2 in the murine prostate induced murine prostatic intraepithelial neoplasia and ELL2 knockdown enhanced proliferation and migration in C4-2 prostate cancer cells. Here, knockdown of ELL2 sensitized prostate cancer cells to DNA damage and overexpression of ELL2 protected prostate cancer cells from DNA damage. Knockdown of ELL2 impaired non-homologous end joining repair but not homologous recombination repair. Transfected ELL2 co-immunoprecipitated with both Ku70 and Ku80 proteins. ELL2 could bind to and co-accumulate with Ku70/Ku80 proteins at sites of DNA damage. Knockdown of ELL2 dramatically inhibited Ku70 and Ku80 recruitment and retention at DNA double-strand break sites in prostate cancer cells. The impaired recruitment of Ku70 and Ku80 proteins to DNA damage sites upon ELL2 knockdown was rescued by re-expression of an ELL2 transgene insensitive to siELL2. This study suggests that ELL2 is required for efficient NHEJ repair via Ku70/Ku80 in prostate cancer cells.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA , Interferência de RNA , Fatores de Elongação da Transcrição/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Doxorrubicina/farmacologia , Raios gama , Células HEK293 , Células HeLa , Humanos , Autoantígeno Ku/metabolismo , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Elongação da Transcrição/metabolismo
3.
Cancer Res ; 77(10): 2674-2685, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28416484

RESUMO

DNA single-strand breaks (SSB) are the most common form of DNA damage, requiring repair processes that to initiate must overcome chromatin barriers. The FACT complex comprised of the SSRP1 and SPT16 proteins is important for maintaining chromatin integrity, with SSRP1 acting as an histone H2A/H2B chaperone in chromatin disassembly during DNA transcription, replication, and repair. In this study, we show that SSRP1, but not SPT16, is critical for cell survival after ionizing radiation or methyl methanesulfonate-induced single-strand DNA damage. SSRP1 is recruited to SSB in a PARP-dependent manner and retained at DNA damage sites by N-terminal interactions with the DNA repair protein XRCC1. Mutational analyses showed how SSRP1 function is essential for chromatin decondensation and histone H2B exchange at sites of DNA strand breaks, which are both critical to prime chromatin for efficient SSB repair and cell survival. By establishing how SSRP1 facilitates SSB repair, our findings provide a mechanistic rationale to target SSRP1 as a general approach to selectively attack cancer cells. Cancer Res; 77(10); 2674-85. ©2017 AACR.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Quebras de DNA de Cadeia Simples , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Células HeLa , Histonas/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
4.
J Biol Chem ; 291(31): 16197-207, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27288411

RESUMO

Multisubunit protein assemblies offer integrated functionalities for efficient cell signal transduction control. One example of such protein assemblies, the BRCA1-A macromolecular complex, couples ubiquitin recognition and metabolism and promotes cellular responses to DNA damage. Specifically, the BRCA1-A complex not only recognizes Lys(63)-linked ubiquitin (K63-Ub) adducts at the damaged chromatin but is endowed with K63-Ub deubiquitylase (DUB) activity. To explore how the BRCA1-A DUB activity contributes to its function at DNA double strand breaks (DSBs), we used RNAi and genome editing approaches to target BRCC36, the protein subunit that confers the BRCA1-A complex its DUB activity. Intriguingly, we found that the K63-Ub DUB activity, although dispensable for maintaining the integrity of the macromolecular protein assembly, is important in enforcing the accumulation of the BRCA1-A complex onto DSBs. Inactivating BRCC36 DUB attenuated BRCA1-A functions at DSBs and led to unrestrained DSB end resection and hyperactive DNA repair. Together, our findings uncover a pivotal role of BRCC36 DUB in limiting DSB processing and repair and illustrate how cells may physically couple ubiquitin recognition and metabolizing activities for fine tuning of DNA repair processes.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Membrana/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Humanos , Proteínas de Membrana/genética , Ubiquitina/genética
5.
DNA Repair (Amst) ; 44: 76-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27233112

RESUMO

Oxidative DNA damage induces genomic instability and may lead to mutagenesis and carcinogenesis. As severe blockades to RNA polymerase II (RNA POLII) during transcription, oxidative DNA damage and the associated DNA strand breaks have a profoundly deleterious impact on cell survival. To protect the integrity of coding regions, high fidelity DNA repair at a transcriptionally active site in non-dividing somatic cells, (i.e., terminally differentiated and quiescent/G0 cells) is necessary to maintain the sequence integrity of transcribed regions. Recent studies indicate that an RNA-templated, transcription-associated recombination mechanism is important to protect coding regions from DNA damage-induced genomic instability. Here, we describe the discovery that G1/G0 cells exhibit Cockayne syndrome (CS) B (CSB)-dependent assembly of homologous recombination (HR) factors at double strand break (DSB) sites within actively transcribed regions. This discovery is a challenge to the current dogma that HR occurs only in S/G2 cells where undamaged sister chromatids are available as donor templates.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , DNA/genética , Recombinação Homóloga , RNA Polimerase II/genética , Transcrição Gênica , Pareamento Incorreto de Bases , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/metabolismo , Fase G1 , Instabilidade Genômica , Humanos , Estresse Oxidativo , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II/metabolismo
6.
Cancer Discov ; 5(7): 752-67, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26069190

RESUMO

UNLABELLED: ARID1A, SWI/SNF chromatin remodeling complex subunit, is a recently identified tumor suppressor that is mutated in a broad spectrum of human cancers. Thus, it is of fundamental clinical importance to understand its molecular functions and determine whether ARID1A deficiency can be exploited therapeutically. In this article, we report a key function of ARID1A in regulating the DNA damage checkpoint. ARID1A is recruited to DNA double-strand breaks (DSB) via its interaction with the upstream DNA damage checkpoint kinase ATR. At the molecular level, ARID1A facilitates efficient processing of DSB to single-strand ends and sustains DNA damage signaling. Importantly, ARID1A deficiency sensitizes cancer cells to PARP inhibitors in vitro and in vivo, providing a potential therapeutic strategy for patients with ARID1A-mutant tumors. SIGNIFICANCE: ARID1A has been identified as one of the most frequently mutated genes across human cancers. Our data suggest that clinical utility of PARP inhibitors might be extended beyond patients with BRCA mutations to a larger group of patients with ARID1A-mutant tumors, which may exhibit therapeutic vulnerability to PARP inhibitors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Dano ao DNA , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/deficiência , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Fatores de Transcrição/deficiência , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Feminino , Células HCT116 , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Proteínas Nucleares/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Fatores de Transcrição/química , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Proc Natl Acad Sci U S A ; 112(27): E3495-504, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100862

RESUMO

Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome.


Assuntos
Ciclo Celular/genética , Dano ao DNA , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Recombinação Homóloga , RNA/genética , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , DNA Helicases/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fase G1/genética , Células HEK293 , Células HeLa , Humanos , Autoantígeno Ku , Microscopia Confocal , Modelos Genéticos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , RNA/metabolismo , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Fase de Repouso do Ciclo Celular/genética , Transcrição Gênica
8.
J Virol ; 89(15): 7612-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25972552

RESUMO

UNLABELLED: Nasopharyngeal carcinoma (NPC) is closely associated with latent Epstein-Barr virus (EBV) infection. Although EBV infection of preneoplastic epithelial cells is not immortalizing, EBV can modulate oncogenic and cell death mechanisms. The viral latent membrane proteins 1 (LMP1) and LMP2A are consistently expressed in NPC and can cooperate in bitransgenic mice expressed from the keratin-14 promoter to enhance carcinoma development in an epithelial chemical carcinogenesis model. In this study, LMP1 and LMP2A were coexpressed in the EBV-negative NPC cell line HK1 and examined for combined effects in response to genotoxic treatments. In response to DNA damage activation, LMP1 and LMP2A coexpression reduced γH2AX (S139) phosphorylation and caspase cleavage induced by a lower dose (5 µM) of the topoisomerase II inhibitor etoposide. Regulation of γH2AX occurred before the onset of caspase activation without modulation of other DNA damage signaling mediators, including ATM, Chk1, or Chk2, and additionally was suppressed by inducers of DNA single-strand breaks (SSBs) and replication stress. Despite reduced DNA damage repair signaling, LMP1-2A coexpressing cells recovered from cytotoxic doses of etoposide; however, LMP1 expression was sufficient for this effect. LMP1 and LMP2A coexpression did not enhance cell growth, with a moderate increase of cell motility to fibronectin. This study supports that LMP1 and LMP2A jointly regulate DNA repair signaling and cell death activation with no further enhancement in the growth properties of neoplastic cells. IMPORTANCE: NPC is characterized by clonal EBV infection and accounts for >78,000 annual cancer cases with increased incidence in regions where EBV is endemic, such as southeast Asia. The latent proteins LMP1 and LMP2A coexpressed in NPC can individually enhance growth or survival properties in epithelial cells, but their combined effects and potential regulation of DNA repair and checkpoint mechanisms are relatively undetermined. In this study, LMP1-2A coexpression suppressed activation of the DNA damage response (DDR) protein γH2AX induced by selective genotoxins that promote DNA replication stress or SSBs. Expression of LMP1 was sufficient to recover cells, resulting in outgrowth of LMP1 and LMP1-2A-coexpressing cells and indicating distinct LMP1-dependent effects in the restoration of replicative potential. These findings demonstrate novel properties for LMP1 and LMP2A in the cooperative modulation of DDR and apoptotic signaling pathways, further implicating both proteins in the progression of NPC and epithelial malignancies.


Assuntos
Apoptose , Dano ao DNA , Infecções por Vírus Epstein-Barr/fisiopatologia , Herpesvirus Humano 4/metabolismo , Neoplasias Nasofaríngeas/fisiopatologia , Proteínas da Matriz Viral/metabolismo , Carcinoma , Morte Celular , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Histonas/genética , Histonas/metabolismo , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/virologia , Fosforilação , Proteínas da Matriz Viral/genética
9.
Nat Commun ; 6: 6233, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25670504

RESUMO

Non-homologous end joining (NHEJ) is a major pathway to repair DNA double-strand breaks (DSBs), which can display different types of broken ends. However, it is unclear how NHEJ factors organize to repair diverse types of DNA breaks. Here, through systematic analysis of the human NHEJ factor interactome, we identify PAXX as a direct interactor of Ku. The crystal structure of PAXX is similar to those of XRCC4 and XLF. Importantly, PAXX-deficient cells are sensitive to DSB-causing agents. Moreover, epistasis analysis demonstrates that PAXX functions together with XLF in response to ionizing radiation-induced complex DSBs, whereas they function redundantly in response to Topo2 inhibitor-induced simple DSBs. Consistently, PAXX and XLF coordinately promote the ligation of complex but not simple DNA ends in vitro. Altogether, our data identify PAXX as a new NHEJ factor and provide insight regarding the organization of NHEJ factors responding to diverse types of DSB ends.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Mapeamento de Interação de Proteínas , Homologia de Sequência de Aminoácidos , Animais , Antígenos Nucleares/metabolismo , Linhagem Celular , Galinhas , Cristalografia por Raios X , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Células HEK293 , Humanos , Autoantígeno Ku , Espectrometria de Massas , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
10.
Cell Res ; 25(2): 225-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25601159

RESUMO

Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , Tirosina/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gefitinibe , Células HeLa , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Quinazolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos
11.
Nat Commun ; 5: 5513, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25423885

RESUMO

Cellular DNA repair processes are crucial to maintain genome stability and integrity. In DNA base excision repair, a tight heterodimer complex formed by DNA polymerase ß (Polß) and XRCC1 is thought to facilitate repair by recruiting Polß to DNA damage sites. Here we show that disruption of the complex does not impact DNA damage response or DNA repair. Instead, the heterodimer formation is required to prevent ubiquitylation and degradation of Polß. In contrast, the stability of the XRCC1 monomer is protected from CHIP-mediated ubiquitylation by interaction with the binding partner HSP90. In response to cellular proliferation and DNA damage, proteasome and HSP90-mediated regulation of Polß and XRCC1 alters the DNA repair complex architecture. We propose that protein stability, mediated by DNA repair protein complex formation, functions as a regulatory mechanism for DNA repair pathway choice in the context of cell cycle progression and genome surveillance.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Linhagem Celular , Dano ao DNA , DNA Polimerase beta/genética , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Modelos Moleculares , Ligação Proteica , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
12.
PLoS One ; 9(1): e84899, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454762

RESUMO

During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endopeptidases/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/deficiência , Endopeptidases/genética , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Recombinação Homóloga/efeitos da radiação , Humanos , Cinética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Raios X/efeitos adversos
13.
Mol Cell ; 53(1): 101-14, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24289923

RESUMO

The breast and ovarian cancer-specific tumor suppressor BRCA1, along with its heterodimer partner BRCA1-associated RING domain protein (BARD1), plays important roles in DNA repair, centrosome regulation, and transcription. To explore further functions of BRCA1/BARD1, we performed mass spectrometry analysis and identified Obg-like ATPase 1 (OLA1) as a protein that interacts with the carboxy-terminal region of BARD1. OLA1 directly bound to the amino-terminal region of BRCA1 and γ-tubulin. OLA1 localized to centrosomes in interphase and to the spindle pole in mitotic phase, and its knockdown resulted in centrosome amplification and the activation of microtubule aster formation. OLA1 with a mutation observed in breast cancer cell line, E168Q, failed to bind BRCA1 and rescue the OLA1 knockdown-induced centrosome amplification. BRCA1 variant I42V also abrogated the binding of BRCA1 to OLA1. These findings suggest that OLA1 plays an important role in centrosome regulation together with BRCA1.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Centrossomo/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Proteína BRCA1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Humanos , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Nucleic Acids Res ; 42(4): 2330-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24293652

RESUMO

Reactive oxygen species (ROS)-induced DNA damage is repaired by the base excision repair pathway. However, the effect of chromatin structure on BER protein recruitment to DNA damage sites in living cells is poorly understood. To address this problem, we developed a method to specifically produce ROS-induced DNA damage by fusing KillerRed (KR), a light-stimulated ROS-inducer, to a tet-repressor (tetR-KR) or a transcription activator (TA-KR). TetR-KR or TA-KR, bound to a TRE cassette (∼ 90 kb) integrated at a defined genomic locus in U2OS cells, was used to induce ROS damage in hetero- or euchromatin, respectively. We found that DNA glycosylases were efficiently recruited to DNA damage in heterochromatin, as well as in euchromatin. PARP1 was recruited to DNA damage within condensed chromatin more efficiently than in active chromatin. In contrast, recruitment of FEN1 was highly enriched at sites of DNA damage within active chromatin in a PCNA- and transcription activation-dependent manner. These results indicate that oxidative DNA damage is differentially processed within hetero or euchromatin.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Eucromatina/metabolismo , Heterocromatina/metabolismo , Linhagem Celular , Cromatina/metabolismo , DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , Eucromatina/enzimologia , Endonucleases Flap/metabolismo , Genoma , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/efeitos da radiação , Heterocromatina/enzimologia , Humanos , Lasers , Oxirredução , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Elementos de Resposta , Transativadores/genética , Transativadores/metabolismo
15.
Nucleic Acids Res ; 42(3): 1671-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24170812

RESUMO

MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3' side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5' side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Proteína do Grupo de Complementação A da Anemia de Fanconi/química , Humanos , Metoxaleno/farmacologia
16.
J Cell Sci ; 126(Pt 19): 4414-23, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23868975

RESUMO

Single-strand breaks (SSBs) are the most common type of oxidative DNA damage and they are related to aging and many genetic diseases. The scaffold protein for repair of SSBs, XRCC1, accumulates at sites of poly(ADP-ribose) (pAR) synthesized by PARP, but it is retained at sites of SSBs after pAR degradation. How XRCC1 responds to SSBs after pAR degradation and how this affects repair progression are not well understood. We found that XRCC1 dissociates from pAR and is translocated to sites of SSBs dependent on its BRCTII domain and the function of PARG. In addition, phosphorylation of XRCC1 is also required for the proper dissociation kinetics of XRCC1 because (1) phosphorylation sites mutated in XRCC1 (X1 pm) cause retention of XRCC1 at sites of SSB for a longer time compared to wild type XRCC1; and (2) phosphorylation of XRCC1 is required for efficient polyubiquitylation of XRCC1. Interestingly, a mutant of XRCC1, LL360/361DD, which abolishes pAR binding, shows significant upregulation of ubiquitylation, indicating that pARylation of XRCC1 prevents the poly-ubiquitylation. We also found that the dynamics of the repair proteins DNA polymerase beta, PNK, APTX, PCNA and ligase I are regulated by domains of XRCC1. In summary, the dynamic damage response of XRCC1 is regulated in a manner that depends on modifications of polyADP-ribosylation, phosphorylation and ubiquitylation in live cells.


Assuntos
Quebras de DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Reparo do DNA , Células HEK293 , Células HeLa , Humanos , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose , Estrutura Terciária de Proteína , Transfecção , Ubiquitinação , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Proteínas de Xenopus
17.
PLoS One ; 7(11): e49687, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166748

RESUMO

The maintenance of genomic stability requires accurate genome replication, repair of DNA damage, and the precise segregation of chromosomes in mitosis. GEN1 possesses Holliday junction resolvase activity in vitro and presumably functions in homology driven repair of DNA double strand breaks. However, little is currently known about the cellular functions of human GEN1. In the present study we demonstrate that GEN1 is a novel centrosome associated protein and we characterize the various phenotypes associated with GEN1 deficiency. We identify an N-terminal centrosome localization signal in GEN1, which is required and sufficient for centrosome localization. We report that GEN1 depletion results in aberrant centrosome numbers associated with the formation of multiple spindle poles in mitosis, an increased number of cells with multi-nuclei, increased apoptosis and an elevated level of spontaneous DNA damage. We find homologous recombination severely impaired in GEN1 deficient cells, suggesting that GEN1 functions as a Holliday junction resolvase in vivo as well as in vitro. Complementation of GEN1 depleted cells with various GEN1 constructs revealed that centrosome association but not catalytic activity of GEN1 is required for preventing centrosome hyper-amplification, formation of multiple mitotic spindles, and multi-nucleation. Our findings provide novel insight into the biological functions of GEN1 by uncovering an important role of GEN1 in the regulation of centrosome integrity.


Assuntos
Centrossomo/metabolismo , Instabilidade Genômica , Resolvases de Junção Holliday/metabolismo , Sequência de Aminoácidos , Apoptose , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/deficiência , Recombinação Homóloga , Humanos , Mitose , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
18.
Cancer Sci ; 102(10): 1840-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21756275

RESUMO

BRCA1 is an important gene involved in susceptibility to breast and ovarian cancer and its product regulates the cellular response to DNA double-strand breaks. Here, we present evidence that BRCA1 also contributes to the transcription-coupled repair (TCR) of ultraviolet (UV) light-induced DNA damage. BRCA1 immediately accumulates at the sites of UV irradiation-mediated damage in cell nuclei in a manner that is fully dependent on both Cockayne syndrome B (CSB) protein and active transcription. Suppression of BRCA1 expression inhibits the TCR of UV lesions and increases the UV sensitivity of cells proficient in TCR. BRCA1 physically interacts with CSB protein. BRCA1 polyubiquitinates CSB and this polyubiquitination and subsequent degradation of CSB occur following UV irradiation, even in the absence of Cockayne syndrome A (CSA) protein. The depletion of BRCA1 expression increases the UV sensitivity of CSA-deficient cells. These results indicate that BRCA1 is involved in TCR and that a BRCA1-dependent polyubiquitination pathway for CSB exists alongside the CSA-dependent pathway to yield more efficient excision repair of lesions on the transcribed DNA strand.


Assuntos
Proteína BRCA1/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteína BRCA1/genética , Linhagem Celular Tumoral , DNA/genética , Enzimas Reparadoras do DNA/genética , Células HEK293 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Raios Ultravioleta
19.
Mol Cell Biol ; 28(24): 7380-93, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18936166

RESUMO

BRCA1 is the first susceptibility gene to be linked to breast and ovarian cancers. Although mounting evidence has indicated that BRCA1 participates in DNA double-strand break (DSB) repair pathways, its precise mechanism is still unclear. Here, we analyzed the in situ response of BRCA1 at DSBs produced by laser microirradiation. The amino (N)- and carboxyl (C)-terminal fragments of BRCA1 accumulated independently at DSBs with distinct kinetics. The N-terminal BRCA1 fragment accumulated immediately after laser irradiation at DSBs and dissociated rapidly. In contrast, the C-terminal fragment of BRCA1 accumulated more slowly at DSBs but remained at the sites. Interestingly, rapid accumulation of the BRCA1 N terminus, but not the C terminus, at DSBs depended on Ku80, which functions in the nonhomologous end-joining (NHEJ) pathway, independently of BARD1, which binds to the N terminus of BRCA1. Two small regions in the N terminus of BRCA1 independently accumulated at DSBs and interacted with Ku80. Missense mutations found within the N terminus of BRCA1 in cancers significantly changed the kinetics of its accumulation at DSBs. A P142H mutant failed to associate with Ku80 and restore resistance to irradiation in BRCA1-deficient cells. These might provide a molecular basis of the involvement of BRCA1 in the NHEJ pathway of the DSB repair process.


Assuntos
Antígenos Nucleares/metabolismo , Proteína BRCA1/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/efeitos da radiação , Fragmentos de Peptídeos/metabolismo , Antígenos Nucleares/genética , Proteína BRCA1/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Autoantígeno Ku , Lasers , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...